博客
关于我
cs231n--RNN
阅读量:798 次
发布时间:2023-04-04

本文共 709 字,大约阅读时间需要 2 分钟。

Regularization

在机器学习模型训练过程中,正则化(Regularization)是一种重要的技术,主要用于防止模型过拟合,提升模型的泛化能力。通过引入L2正则化(L2 Regularization),模型能够约束权重矩阵W的大小,使其不至于过大,从而避免模型对噪声数据的过度依赖。如图所示,权重矩阵W通过L2正则化得到规范化。


Optimization

在模型训练过程中,优化算法的选择对模型性能有着直接影响。以下是几种常见的优化方法及其特点:

  • 批量梯度下降(Batch Gradient Descent, BGD)

    批量梯度下降是一种基于整个训练集的优化方法。每次更新参数时,需要扫描完整个训练集,计算损失函数的梯度,从而更新模型参数。这种方法的优点是计算稳定,但随着训练集规模的增加,计算速度会显著降低。

  • 随机梯度下降(Stochastic Gradient Descent, SGD)

    随机梯度下降通过随机选择训练样本来更新模型参数。相比批量梯度下降,SGD的训练速度更快,特别是在大规模训练集上,SGD可以显著减少训练时间。然而,随机性带来了噪声,可能导致模型收敛到非最优解。

  • 小批量梯度下降(Mini-batch Gradient Descent, MGD)

    小批量梯度下降是一种折中方案,通过将训练集分割成小批量进行处理。每个小批量独立计算梯度,并对其进行平均更新,从而平衡了批量梯度下降和随机梯度下降的优缺点。小批量梯度下降不仅提高了训练效率,还能在一定程度上减少噪声影响。


  • 通过对比分析可以看出,不同的优化方法各有优劣。选择合适的优化方法需要综合考虑训练集规模、计算资源以及模型的收敛性。

    转载地址:http://scrfk.baihongyu.com/

    你可能感兴趣的文章
    multi_index_container
    查看>>
    mutiplemap 总结
    查看>>
    MySQL Error Handling in Stored Procedures---转载
    查看>>
    MVC 区域功能
    查看>>
    MySQL FEDERATED 提示
    查看>>
    mysql generic安装_MySQL 5.6 Generic Binary安装与配置_MySQL
    查看>>
    Mysql group by
    查看>>
    MySQL I 有福啦,窗口函数大大提高了取数的效率!
    查看>>
    mysql id自动增长 初始值 Mysql重置auto_increment初始值
    查看>>
    MySQL in 太多过慢的 3 种解决方案
    查看>>
    Mysql Innodb 锁机制
    查看>>
    MySQL InnoDB中意向锁的作用及原理探
    查看>>
    MySQL InnoDB事务隔离级别与锁机制深入解析
    查看>>
    Mysql InnoDB存储引擎 —— 数据页
    查看>>
    Mysql InnoDB存储引擎中的checkpoint技术
    查看>>
    Mysql InnoDB存储引擎中缓冲池Buffer Pool、Redo Log、Bin Log、Undo Log、Channge Buffer
    查看>>
    MySQL InnoDB引擎的锁机制详解
    查看>>
    Mysql INNODB引擎行锁的3种算法 Record Lock Next-Key Lock Grap Lock
    查看>>
    mysql InnoDB数据存储引擎 的B+树索引原理
    查看>>
    mysql interval显示条件值_MySQL INTERVAL关键字可以使用哪些不同的单位值?
    查看>>